المبادئ الأساسية

من Arab MM*Stat
اذهب إلى: تصفح، ابحث

المبادئ الأساسية ,المثال التوضيحي للمبادئ الأساسية لنظرية العينات,المعلومات الاضافية للمبادئ الأساسية



H100.gif 7.1 المبادئ الأساسية


المجتمع

احدى المهام الرئيسية للاحصاء الحصول على المعلومات حول المجتمع. تسمى مجموعة العناصر التي لها نفس

الظاهرة محل الدراسة بالمجتمع. يحدد المجتمع بدقة وبشكل شامل ليقرر المرء فورا اذا كان العنصر يعود للمجتمع أو لا.


حجم المجتمع :

حجم المجتمع N ,هو عدد العناصر في المجتمع. يكون المجتمع محدود أو غير محدود في الحجم. وقد يكون افتراضي.

نفرض المتغير العشوائي X\, يأخذ القيم المعينة x_{j}\;(j=1,\ldots,N) في

مجتمع منتهي مع التكرارات المطلقة والنسبية Mmengjavaimg387.gif و Mmengjavaimg388.gif المعينة على التوالي.

التكرار المطلق Mmengjavaimg387.gif هو العدد الاجمالي للعناصر في المجتمع لأجل Mmengjavaimg1648.gif. ويتعلق التكرار النسبي بالتكرار المطلق كالتالي:


Mmengjavaimg1649.gif


لوصف المجتمع أو التوزيع بسهولة يمكن حساب بعض الخواص المعينة والتي نشير اليها في أغلب الأحيان بالأحرف اليونانية:


  • المتوسط الحسابي
  • \mu=\frac{\sum\limits_{i=1}^{N}x_{i}h(x_{j})}{N}=\sum\limits_{j=1}^{N}x_{j}f(x_{j})


  • التباين
  • \sigma^{2}=\frac{1}{N}\sum\limits_{i=1}^{N}(x_{i}-\mu)^{2}h(x_{j})=\sum\limits_{j=1}^{N}(x_{j}-\mu)^{2}f(x_{j})


  • الانحراف المعياري
  • \sigma=\sqrt{\sigma^{2}}


  • نفرض المتغير العشوائي X\, ثنائي القيم, ويأخذ القيمتين الصحيحتين x_{j} = 0\, و x_{j} = 1\, عندئذ تعرف النسبة كالتالي :

  • Mmengjavaimg1654.gif


    تأخذ كل خاصة قيمة معينة للمجتمع. (كما سنرى بالأسفل ستدعى عيناتهم احصائيا بمتوسط العينة,تباين العينة ونسبة العينة وتختلف من عينة لأخرى).


    توزيع المتغير X\, وخواصه مجهولة بشكل عام. لمعرفته بشكل أفضل يحاول المرء النظر لكل عناصرالمجتمع.


    التعداد السكاني : في التعداد السكاني تكون البيانات مجمعة لكل عناصر المجتمع. فقط وفي هذه الحالة يحدد

    بسهولة التوزيع وخواص X\,


    العينة

    أي مجموعة جزئية منتهية من المشاهدات والمسحوبة من المجتمع تسمى عينة . و عدد عناصر العينة يسمى حجم العينة ويرمز له n.


    الاستدلال الاستقرائي:

    حيث أن العينة تحتوي فقط على مجموعة جزئية من عناصر المجتمع. يمكن أن تزود معلومات ناقصة حول توزيع

    المتغير Mmengjavaimg4.gif في المجتمع. بالرغم من ذلك يمكن استخدام النتائج التي نحصل عليها من تحليل العينة لمعرفة شكل الاستدلال حول المجتمع. وهذا النوع من الاستدلال ( من العينة للمجتمع ) يسمى بالاستدلال الاستقرائي.

    الاستدلالات الاستقرائية أحيانا لا يمكن ايجادها وأحيانا أخرى يمكن ايجادها وقد تكون خاطئة. وتستعمل قوانين الاحتمال لحساب درجة عدم الثقة لهذه الاستنتاجات.


    يزود الاستدلال الاستقرائي بمجموعة من الأدوات لسحب الاستنتاجات الاحتمالية حول المجتمع من العينة. يتطلب

    استعمال هذه الأدوات أن العينة المسحوبة بطريقة ما يمكن صياغتها بواسطة نموذج احتمالي. هذا مؤكد

    اذا اختيار عناصر العينة يتم بشكل عشوائي.


    العينة العشوائية:

    يوجد مفهومين رئيسين للعينة العشوائية من المجتمع المنتهي:

    بدون احلال

    مع الاحلال


    في سحب العينات بدون احلال, فأن كل عنصر في المجتمع يكون له نفس الاحتمال ليختار لكل مشاهدة مسحوبة.

    ومع ذلك فأن السحوبات ليست مستقلة لأن توزيع المجتمع Mmengjavaimg4.gif يتغير عندما يتم حذف مشاهدات.

    في سحب العينات مع الاحلال, فأن كل مشاهدة يكون لها نفس الاحتمال لتختار لكل مشاهدة مسحوبة. و في هذه الحالة

    السحوبات تكون مستقلة عن بعضها البعض, ومع ذلك لأن المشاهدات تعاد للمجتمع( لذلك المجتمع وتوزيع Mmengjavaimg4.gif لا يتغير ). يمكن سحب العنصر نفسه أكثر من مرة في العينة في حالة الاحلال.

    سحب العينة العشوائية من الحجم n ينظر له كتسلسل للتجارب العشوائية n .يطابق كل عملية

    سحب للمتغير العشوائي وكامل العينة هي مجموع n للمتغيرات العشوائية Mmengjavaimg1656.gif

    يتضمن شكل سحب العينات البسيطة سحب العينات مع الاعادة, في هذه الحالة


    تكون المتغيرات العشوائية Mmengjavaimg1657.gif موزعة بشكل متماثل ولها جميعها نفس التوزيع Mmengjavaimg291.gif كالمتغير Mmengjavaimg4.gif في المجتمع.

    تكون المتغيرات العشوائية Mmengjavaimg1657.gif متغيرات عشوائية مستقلة.


    القيم الفعلية n للمتغيرات العشوائية Mmengjavaimg1657.gif تكتب كالتالي:


    Mmengjavaimg1658.gif


    الاحصائية

    الدالة U=U(X_{1},\ldots,X_{n}) للمتغيرات العشوائية X_{1},\ldots,X_{n} تسمى الاحصائية ,الاحصائية تكون تابع المتغيرات العشوائية هو المتغير العشوائي نفسه مع توزيعه الخاص ويدعى بتوزيع العينة.


    تعيين القيمة المتوقعة والتباين والانحراف المعياري لتوزيع العينة كالتالي:


    القيمة المتوقعة E(U)=\mu_{U}\,


    والتباين Var (U) = \sigma^{2}_{U}


    والانحراف المعياري \sigma_{u}\,


    بعد سحب العينة بشكل فعلي n ,القيم الفعلية الحالية x_{1},\ldots,x_{n} للمتغير العشوائي X_{1},\ldots,X_{n} .

    حساب u=U(x_{1},\ldots,x_{n}) كتابع للقيم الفعلية الحالية n , تنتج القيم الفعلية للاحصائية U=U(X_{1},\ldots,X_{n}).


    اذا سحب المرء بشكل متكرر العينات من الحجم المعطى n\, من نفس المجتمع ,عندئذ القيم

    الفعلية المطابقة الى X\, و U\, ستختلف من عينة لأخرى.

    عند مناقشةالاحصائية هو شائع استعمال الأحرف الصغيرة لكلا المتغير العشوائي وقيمه الفعلية.


    هدف الاحصاءات المحسوبة لاستعمالهم لسحب الاستنتاجات حول خواص المجتمع المجهول. تكون الاحصاءات المحسوبة الهامة:

  • الوسط الحسابي للعينة : يتم حساب الوسط الحسابي للعينة بصيغة مماثلة للوسط الحسابي للمجتمع \mu كالتالي:

  • Mmengjavaimg1666.gif



    حيث Mmengjavaimg1667.gif و Mmengjavaimg1668.gif التكرارات المطلقة والنسبية في العينة.

    لخصنا في الفصل 2 الاحصاءات الوصفية المطبقة لجسم معين من البيانات. لم نميز في تلك الحالة بين المجتمعات

    والعينات. هنا نشير للتكرارات المطلقة والنسبية للمجتمع باستعمال Mmengjavaimg387.gif و Mmengjavaimg388.gif على التوالي

    بينما تميز عيناتهم برمز التقدير فوق. يستخدم عموما رمز التقدير في الاحصاءات للترميز للمقدرات

    (شاهد الفصل 8), بالاضافة تستطيع التفكير بالتكرارات النسبية للعينة Mmengjavaimg1668.gif كتقديرات أو تقريبات لنظرائهم من مجتمعاتهم Mmengjavaimg1669.gif


  • متوسط الانحرافات المربعة بالتناظر لتباين المجتمع Mmengjavaimg1516.gif

  • Mmengjavaimg1670.gif


    يقسم تباين العينة بواسطة Mmengjavaimg1671.gif بدلا من Mmengjavaimg63.gif


    Mmengjavaimg1672.gif


    نسبة العينة بصورة مماثلة لنسبة المجتمع Mmengjavaimg1673.gif


    Mmengjavaimg1674.gif


    شاهد القسم(5.1) بأن الأحرف الكبيرة تستعمل للاشارة للمتغيرات العشوائية ونستعمل الأحرف الصغيرة للاشارة الى قيمهم الفعلية.